
Dual-Language General-Purpose Self-Hosted

Visual Language and new Textual

Programming Language for Applications

Presented by:
Mahmoud Samir Fayed

Supervised by:
Dr. Yousef Ahmed Alohali

Kingdom of Saudi Arabia

King Saud University

Department of Computer Science

College of Computer and

 Information Sciences

This relates to the dissertation submitted for the degree

Doctor of Philosophy in Computer Science, May 28, 2025

لغة مرئية ذاتية الإستضافة ثنائية اللغة للأغراض العامة
ولغة برمجة نصية جديدة للتطبيقات

2

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Overview

3
Introduction

Visual Programming Languages (VPLs):

• Uses more than one dimension.

• Interaction with graphical elements.

Visual representations:

• Diagrammatic

• Iconic

• Form-based

• Block-based

• Hybrid

Problems: Larger than the text, Maze of wires, etc.

The LabView VPL.

Overview

4
Introduction

(A): The Scratch Visual Programming Language.

• Drag-and-drop.
• No fast interactions (keyboard).
• No time dimension.

(B): The Envision Visual Programming System.

• Fast interactions (Keyboard).
• Not a Self-hosting VPL.
• Developed using C++.

Overview

5
Introduction The PWCT visual programming language.

Features:

1. General-Purpose.

2. Developed at KSU.

3. Many programming languages.

4. Graphical Code Replacement method.

Limitations:

• Windows Product.

• No Translations.

• Developed using VFP.

6

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Problem Statement

7
Problem Statement & Motivation & Contributions

Existing general-purpose visual programming languages, such as Envision and
PWCT, have limitations that reduce their effectiveness in application development.
Furthermore, there is no practical evidence of their use in developing large or
complex low-level systems, such as the creation of a new textual programming
language. Also, improving them requires textual programming.

Motivation

8
Problem Statement & Motivation & Contributions

• Success of many domain-specific VPLs.

• The necessity of being able to import/export textual code.

• Designing a new textual programming language for tools

development will help many similar projects in their mission.

• No popular programming language is developed in Middle East.

TIOBE Index.

Contributions

9
Problem Statement & Motivation & Contributions

• Using visual programming to develop/maintain a Compiler/Virtual Machine for many years.

• Dynamic language (lightweight implementation, rich features, Desktop/WebAsm/Microcontrollers/etc).

• Novel features that can extend the OOP paradigm (Develop DSL resemble CSS/Supernova).

• The research prototype PWCT2 (lower storage requirements, better performance, etc.).

• VPL that supports Ring language (394 visual components).

• Textual-to-visual code conversion tool (enables a self-hosting VPL based on Ring).

• Testing the feasibility of using the Ring language in the development of PWCT2.

• Arabic Translation for the PWCT2 Environment/Components.

10

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Literature Review

11
Literature Review

Category Examples

Lightweight and Embeddable Lua, Squirrel, Wren, etc.

Comes with Ready-to-Use Libraries Tcl, Perl, Python, etc.

Support creating Embedded DSLs Lisp, Ruby, etc.

Comes with Powerful IDEs Smalltalk, Visual FoxPro, etc.

Supporting Non-English Syntax Supernova, Citrine, etc.

Domain-specific dynamic languages R, xBase, etc.

Concurrency-oriented design Erlang, Elixir, etc.

Comes with a focus on Performance Julia, Mojo, etc.

Other implementations MicroPython, mRuby, etc.

Category Examples

Block-based Scratch, Snap!, etc.

Diagrammatic Tersus, RAPTOR, etc.

Iconic Kodu, Limnor, etc.

Form-based and

spreadsheet-based
Forms/3, FAR, etc.

Domain-specific Blueprints, Pure Data, etc.

General-purpose PWCT, Envision, etc.

(A) Dynamic TPLs. (B) VPLs

Research Gap (In Dynamic TPLs)

12
Literature Review

Criteria Lua Python Ruby VFP Supernova Proposed Language (Ring)

Open Source √ √ √ X √ √

Portable √ √ √ * * √

Lightweight √ * * X √ √

Embeddable √ √ √ X X √

Dynamic Typing √ √ √ √ √ √

Function like Eval() √ √ √ √ X √

Classes Concept * √ √ √ X √

Inheritance Concept * √ √ √ X √

Private Attributes * * √ √ X √

Batteries Included * √ √ √ * √

IDE * √ * √ * √

Form Designer * * * √ * √

Non-English Syntax * * * * √ √

Case insensitive X X X √ √ √

1-based indexing √ X X √ √ √

Change Keywords X X X X X √

Internal DSL √ √ √ √ X √

IDSL (Custom Syntax) X X X X X √

Visual Implementation X X X X √ √

VI Based on CPWCT X X X X X √

Desktop √ √ √ √ √ √

Web √ √ √ √ X √

WebAssembly * √ √ X X √

Microcontroller * * * X X √

No-GIL √ * * X X √

Register based VM √ X X X X X

Off-side rule X √ X X X X

xBase (Database DSL) X X X √ X X

• Most of the dynamic languages
are developed using textual
programming.

• Few studies about developing a
language with lightweight
implementation and rich
features.

• Few languages provides support
for translation.

• Embedded DSLs doesn’t resemble
external DSLs like
CSS/SQL/Supernova/xBase.

Research Gap (In General-Purpose VPLs)

13
Literature Review

Criteria Scratch Forms/3 Envision Lava PWCT Proposed VPL (PWCT2)

Open Source √ X √ √ √ √

Portable √ X √ √ X √

Rich Colors √ X √ X X √

Time Dimension X √ X X √ √

Auto-Run √ √ X X X √

Rich-Comments X X √ X X √

Generate Ring Code X X X X X √

Interactive Visualization X X √ X X √

Implementation using

Ring
X X X X X √

Import Ring Code X X X X X √

Self-hosting X X * X X √

Form Designer X √ X √ √ √

Steps Tree/Blocks √ X X √ √ √

Steps Tree/Blocks (DAD) √ X X X X √

Play programs as movie X X X X √ √

Supports OOP X X √ √ √ √

Designed for Children √ X X X X X

Just for Research X √ √ √ X X

• Few studies about using VPLs in
large/complex system projects.

• Many GPVPLs are no longer
under active development.

• No Self-hosting GPVPL.

• Importing textual code is not
common/complete in most
VPLs.

• Envision support for interactive
visualization is limited. The
Time Machine in PWCT doesn’t
support the Auto-Run feature.

14

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Materials & Proposed Methods

15
Materials & Proposed Methods

(A) The key features of the proposed dynamic
language and environment. (B) The proposed system architecture.

Materials & Proposed Methods

16
Materials & Proposed Methods

(A) The List structure (Singleton cache).
(B) The Ring language grammar.

(C) Developing Ring Virtual Machine using PWCT.

• Single-pass compiler and optional modules.

• Optimized Ring Lists (Use C structures for critical features).

• Storing bytecode in a single continuous memory block.

• Writable long-byte code format.

• Avoiding the use of a global interpreter lock (No GIL).

Materials & Proposed Methods

17
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

C Compiler Platform/OS (Target)

Watcom C/C++ MS-DOS

Microsoft Visual C/C++ Microsoft Windows

GNU C/C++ Ubuntu Linux

Clang macOS

Android-clang Android

Emscripten WebAssembly

GNU ARM embedded

toolchain
Raspberry Pi Pico

Domain C/C++ Libraries/Tools Count

Terminal User Interface (TUI) ConsoleColors and RogueUtil 2

Network and Security LibCurl, Libuv, and OpenSSL 3

Web Servers HTTPLib and Apache Web Server 2

Database ODBC, SQLite, MySQL, and PostgreSQL 4

Games & multi-media Allegro, LibSDL, RayLib and Tilengine 4

Graphics OpenGL, FreeGLUT and StbImage 3

Graphical User Interface (GUI) Qt, Libui, and NAppGUI 3

Common Files MiniZip, PDFGen and CJSON 3

SDK for Specific Platforms Android SDK and Raspberry Pi Pico SDK 2

(A) C/C++ Compilers

(B) C/C++ Libraries

Materials & Proposed Methods

18
Materials & Proposed Methods

Arabic syntax within a WebAssembly application developed using Ring.

Materials & Proposed Methods

19
Materials & Proposed Methods

Usage (Ring Code) Output

new DSL {

 200

 400 Important

 50

 600 Important

 60

 10 20 30

 40 50 60 Stop

 70 80 90

 800 Important

 }

Sum: 1520

Important:

400

600

(B) Ring code to implement a simple domain-specific language.
(A) Using the DSL class

Materials & Proposed Methods

20
Materials & Proposed Methods

(A) Extending our DSL using inheritance and the GUI library. (B) Using Declarative Style in Ring for
Raspberry Pi Pico programming.

Materials & Proposed Methods

21
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(A) The key features of the proposed visual
programming language.

(B) The proposed self-hosting visual programming language architecture.

Materials & Proposed Methods

22
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(A) The PWCT2 system developed using the Ring programming language.

ID Module Files LOC Comment

1 Environment 5 2649 300

2 General Functions 9 524 122

3 Translation 3 584 20

4 Goal Designer 27 4908 1473

5 Components Browser 5 8876 70

6 VPL Components 1185 57,612 7167

7 Component Parent Classes 3 739 283

8 Form Designer 52 9487 312

9 File System 6 368 415

10 Tools 59 6484 546

(B) System Modules.

Materials & Proposed Methods

23
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(B) PWCT2 uses a main window and dock-able windows.

ID Domain Components Example

1 General 6 Quick Start

2 Console 4 Print Text

3 Control Structures 13 For-In Loop

4 Variables and Operators 17 Assignment

5 Functions 3 Define Function

6 Program Structure 2 Load Source File

7 Lists 15 New Empty List

8 Strings 16 Get String Length

9 Date and Time 7 Add Days

10 Check Data Type 3 Check Character

11 Math 1 Math Functions

12 Files 29 Read File to String

13 System 12 Get System Variable

14 Dynamic Code 3 Eval

15 Database 34 ODBC Connect

16 Security and Internet Functions 11 Download

17 Object-Oriented Programming 10 Define Class

18 Functional Programming 3 Anonymous Function

19 Reflection 29 Globals Info

20 Standard Library 71 Stack Class

21 Web Library 12 WL WebPage Class

22 LibCurl Library 5 LibCurl Easy Init

23 GUI 88 Window Class

(A) Visual Components.

Materials & Proposed Methods

24
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(A) Using the Customization window to select the Steps Tree colors.

ID Step Type Description

1 Start Point
The program root (one for

each visual source file)

2 Comment
Just a comment and does

nothing during runtime

3 First
The first step generated by

the component

4
Allows

Interaction

The step could include sub

steps

5 Leaf
The step cannot include

sub steps

(B) Step Type

Materials & Proposed Methods

25
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(A) Using the Time Machine and the Auto-Run feature.

(B) Using rich comments (Lines, Images, and Headers).

Materials & Proposed Methods

26
Materials & Proposed Methods

Thus, it is necessary to process each slice
individually using four main components:

(B) Using the PWCT2 Form Designer.

(A) Interactive Textual-to-Visual code conversion (Ring2PWCT).

Materials & Proposed Methods

27
Materials & Proposed Methods

Arabic translation for the PWCT2 visual programming language.

28

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Experimental Results

29
Experimental Results

(B) Early users and the language used.(A) Ring Group

47,779

6599
1283

6892

0

10,000

20,000

30,000

40,000

50,000

60,000

Downloads

Windows Linux Macintosh Other

(D) Ring downloads statistics

Variable Value

Male 70

Female 6

Completed less than two lessons 20

Completed more than one lesson 56

Completed the course 23

Contributors 2

(E) Ring Arabic Course (18 Lessons)

Ref. Type Domain

[166] Research Paper Front-end apps for ML Models

[167] Research Paper Front-end apps for ML Models

[91] Printed Book (USA) Games Development

[152] Steam Game Games Development

[168] Research Paper Text/Data Processing apps

[169] Printed Book (Egypt) Text/Data Processing apps

[170] YouTube Videos Desktop/Web development

[171] Research Paper LLMs Training

(C) Use-Cases

Experimental Results

30
Experimental Results

(A) A GUI application developed using the Ring language. (B) The GoldMagic800 game—A puzzle game developed
using RingAllegro.

Experimental Results

31
Experimental Results

(B) Visual implementation size for each module.

Criteria Total

Modules 5

Visual Source Files 43

Storage Size (MB) 278.95

Memory (MB) 1350.6

Visual Components 18,945

Steps 33,314

Steps (Visible) 27,617

Lines of Code (LOC) 24,743

Comments 3037

LOC including comments 27,780

(A) Ring Compiler/VM

Experimental Results

32
Experimental Results

(A) The loading time (LT) and code generation time (CGT).

(B) Code generation time (CGT)
for large visual source files.

Experimental Results

33
Experimental Results

(A) Generated code size for Ring Compiler/VM from 2016 to 2024.

(B) Code size for Lua Compiler/VM from 1993 to 2024.

Language Period Impl. LOC (FR) LOC (LR) Growth

Ring 2016–2024 C 16,402 24,743 51%

mRuby 2014–2024 C 18,134 23,742 31%

Squirrel 2004–2022 C++ 9311 13,991 50%

Lua 1993–2024 C 5603 20,081 258%

(C) Lightweight TPLs.

Experimental Results

34
Experimental Results

Language FPS (Min) FPS (Max)

C 470 480

Ring 1.21 161 170

Python 3.13 80 85

Ring 1.20 33 40

(A) Function call (100 M) benchmark

Variable Value

Extension RingQt

Configuration Files (Input) 439

Input Size 478 KB

Generated Files 197

Generated Lines of Code 211,174

Output Size 6.27 MB

Processing Time 3420 ms

Application/Sample Size (LOC) Loading Time (ms)

Analog Clock 256 36

Image Pixel 548 66

Knight Tour 646 67

Othello 780 78

Visualize Sort 817 81

Game Of Life 903 90

Laser 1051 94

Checkers 1354 124

Get Quotes History 3401 117

Discrete Fourier Transform 6417 203

(B) Waving Cubes Sample (C) Waving Cubes Performance

(D) Code Generator
(E) Ring Notepad – Loading Files

Experimental Results

35
Experimental Results

(A) SuperMan Game.

(B) Citations Prediction application. (D) The Find in Files implementation.

Attribute Value

Source code files 1354

Lines of Code 92 KLOC

Dependencies 27 KLOC

Total Lines of Code 119 KLOC

Attribute
Ring 1.22

(2024)

Compile-time (ms) 871

Byte-code Instructions 724,382

Ring Object File Size (KB) 18,952

Object File Compressed (KB) 2322

(E) PWCT2 Project Size.

(F) Using Ring to develop PWCT2.

(C) Find in Files Screen Shot.

Experimental Results

36
Experimental Results

(B)The relationship between the
number of steps and the required

storage in KB.

(C) Using visual components
increases the abstraction

level.

(A)The relationship
between the LT/CGT
and the step count.

• Storing the Steps Tree in the correct order of control flow.

• Storing the visual source in memory through Ring Lists.

• Using the Ring language instead of Visual FoxPro (VFP).

• Using the Qt framework (RingQt).

Experimental Results

37
Experimental Results

Generation VPL File Storage (KB) Steps LT (ms) CGT (ms)

PWCT2 RingPWCT GameOfLife 773 1253 1068 43

PWCT2 RingPWCT Checkers 845 1307 1077 43

PWCT2 RingPWCT GoGame 946 1453 1166 47

PWCT2 RingPWCT Chess 1012 1560 1270 52

PWCT1 CPWCT Vmfuncs 7966 1000 549 1748

PWCT1 CPWCT Refmeta_ext 8243 1075 593 1993

PWCT1 CPWCT File_ext 9799 1235 747 2651

PWCT1 CPWCT Vm_oop 11397 1497 862 3862

Attribute PWCT1 PWCT2

Visual Programming Language CPWCT RingPWCT

Visual Source Files Count

(Sample Size)
43 25

Pearson Correlation

 (Storage vs. Steps)
0.8693 0.9662

Pearson Correlation

 (CGT vs. Steps)
0.9105 0.9947

Spearman Correlation

(Storage vs. Steps)
0.8198 0.9867

Spearman Correlation

 (CGT vs. Steps)
0.9914 0.9855

Average Storage per Step

(KB/step)
13.6751 0.6543

Average CGT per Step

 (ms/step)
1.2956 0.0353

RMSE for Storage 23.4063 0.1082

RMSE for CGT 1.0539 0.0032(A) Large Visual Source Files.

(B) PWCT1 vs. PWCT2.

PWCT2 provides approximately 36 times faster code generation
and 20 times lower storage requirements for visual source files.

Experimental Results

38
Experimental Results

(B) User satisfaction according to steam
statistics.

(A) PWCT2 Software downloads across top countries.

Attribute Value

Total Videos Count 39

Average Duration (M:S) 8:47

Total Duration (H:M:S) 5:42:27

Attribute Value

Impressions 1.72 M

Web page visits 159 K

Software owners 20,623

Users launched the software 1772

Average usage time 9 h and 40 min

Total usage time Over 17,000 h

(C) PWCT2 videos
(D) PWCT2 Users.

39

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

PWCT Disadvantages

40
Discussion and Comparisons

4040

• Large Storage Size: Visual implementations tend to occupy more storage space.

• Memory Requirements for Multiple Instances.

• Lacks support for drag-and-drop functionality (Steps Tree Editor).

• Performance Challenges with Large Visual Source Files

• No support for importing textual source code.

• PWCT is designed to work only under Microsoft Windows.

Suggestions to mitigate these challenges

41
Discussion and Comparisons

4141

• Separate the visual source into many files with clear names and purposes.

• Keep each visual source file to fewer than a few thousand steps.

• Open related visual source files according to the current task.

• External tools are needed when searching multiple generated source code files.

PWCT1 vs. PWCT2

42
Discussion and Comparisons

4242

• PWCT2 supports only the Ring programming language

• PWCT1 provided visual components for various textual programming languages

• PWCT2 is not compatible with PWCT1 (visual component design/visual source file formats).

• PWCT2 is currently distributed as a desktop tool rather than a web-based application.

43

01

02

03

04

05

06

07

Thesis

Presentation

Outline

Introduction

Problem Statement & Motivation &
Contributions

Literature Review

Materials & Proposed Methods

Experimental Results

Discussion and Comparisons

Conclusion

Conclusion

44

In this thesis we introduced the Ring textual programming

language and the PWCT2 visual programming language.

Ring is based on visual implementation (18,945 components

that generate 24,743 lines of ANSI C code).

Ring combines a lightweight implementation, rich and versatile

standard library and the same Ring implementation serves a wide

range of environments.

Customization is a key feature of Ring (Change syntax/Create DSLs).

Conclusion

45

We have developed PWCT2 (enhanced features, works on

different systems, provides approximately 36 times faster code

generation and 20 times lower storage requirements for visual

source files).

PWCT2 is a self-hosting VPL developed and maintained for many

years using the Ring language (92,000 lines of Ring code).

PWCT2 contains 394 visual components and can convert textual

Ring code into visual code.

PWCT2 has been widely distributed to users via the Steam platform, receiving positive feedback. On Steam, the

software has been launched by 1,772 users, with a total recorded usage time exceeding 17,000 hours.

Limitations

464646

We demonstrated the growth of the Ring language over eight years; while being a lightweight language, we

noticed a growth in the implementation size from 16 KLOC in 2016 to 24 KLOC in 2024. This percentage of growth

(51%) requires attention.

We notice that the performance of the Ring programming language has improved over time, and it is now fast

enough for many use cases as a scripting language. However, improving Ring’s performance remains a challenge,

and we aim to provide optimizations and enhancements with each new release.

Future Directions

47

In the future, we plan to build multiple projects on top of the Ring language

• Localization package for many human languages,

• Various domain-specific languages for different fields.

• Modern framework that includes many templates for database applications.

We aim to enhance the PWCT2 visual programming language

• Supporting additional textual programming languages such as C, Java, C# and Python.

• Improve the environment by offering translations in various human languages.

• Add more components that provide better support for Ring libraries.

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

